IP Intelligence: Research on AI for IP Service and IP of AI

Team: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Dalian University of Technology

Student Member: Qiyao Wang, Hongbo Wang, Huaren Liu

Collections: Hugging Face Badge

News

  • [2024-12-20] 🥳 The AutoPatent has been fortunate to receive attention and coverage from Xin Zhi Yuan, and it will continue to be expanded and improved in the future.
  • [2024-12-13] 🎉 We release the first version of AutoPatent.

Introduction

Our Work

*Equal Contribution and Corresponding Author
Preprint
sym

IPBench: Benchmarking the Knowledge of Large Language Models in Intellectual Property

Qiyao Wang, Guhong Chen, Hongbo Wang, Huaren Liu, Minghui Zhu, Zhifei Qin, Linwei Li, Yilin Yue, Shiqiang Wang, Jiayan Li, Yihang Wu, Ziqiang Liu, Longze Chen, Run Luo, Liyang Fan, Jiaming Li, Lei Zhang, Kan Xu, Hongfei Lin, Hamid Alinejad-Rokny, Shiwen Ni, Yuan Lin, Min Yang

Website | Paper | Github IPBench

Preprint
sym

AutoPatent: A Multi-Agent Framework for Automatic Patent Generation

Qiyao Wang*, Shiwen Ni*, Huaren Liu, Shule Lu, Guhong Chen, Xi Feng, Chi Wei, Qiang Qu, Hamid Alinejad-Rokny, Yuan Lin, Min Yang

TL;DR: We introduce Draft2Patent, a novel task for generating full-length patents (~17K tokens) from drafts, along with the D2P benchmark. Our AutoPatent framework, leveraging a multi-agent system, excels in patent generation, with Qwen2.5-7B outperforming larger models like GPT-4o and Qwen2.5-72B in metrics and human evaluations.

Website | Paper | Github AutoPatent

sym

IPEval: A Bilingual Intellectual Property Agency Consultation Evaluation Benchmark for Large Language Models

Qiyao Wang, Jianguo Huang, Shule Lu, Yuan Lin, Kan Xu, Liang Yang, Hongfei Lin

TL;DR: IPEval introduces a benchmark for assessing Large Language Models' (LLMs) performance in intellectual property (IP) law with 2,657 questions. It evaluates LLMs across key IP areas using zero-shot, 5-few-shot, and Chain of Thought (CoT) approaches. Findings highlight the need for specialized IP LLMs due to language proficiency bias. The benchmark is crucial for developing LLMs with deeper IP knowledge.

Website | Paper | Github | HuggingFace IPEval


Chinese Papers

  • 大语言模型驱动知识产权服务智能体研究. Yuan Lin, Chenxi Xu, Qiyao Wang and Huaren Liu. 2025. 图书情报工作 (CSSCI, 北大核心, 南大核心). DUT.
  • 大语言模型赋能知识产权信息服务模型构建及应用. Yuan Lin, Chenxi Xu, Qiyao Wang, and Kun Ding. 2025. 图书馆理论与实践 (CSSCI扩展版, 北大核心). DUT.